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Sorghum economics 

▪ Sorghum [Sorghum bicolor (L.) 

Moench] is the fifth most 

valuable cereal crop in 

production worldwide (Hariprasanna et 

al., 2016)

▪ This crop in the U.S. had a value 

of more than $1 billion and was 

planted on 6.4 million acres in 

2022 (NASS, 2022)

▪ Due to its drought tolerance and 

relatively low cost of production 

(i.e., compared with other 

crops), interest in growing the 

crop is increasing 

USDA
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Important insect pests in sorghum 

▪ Since 2013, sorghum aphid (SA), 

Melanaphis sorghi (Theobald) 

has become an important 

economic pest causing significant 

yield loss across the sorghum 

production region in the US (Bowling et 

al., 2016)

▪ This damage is resulting in plant 

stress and reduction of 

photosynthesis due to honeydew 

secretion and growth of sooty 

mold (Bowling et al., 2016; Singh et al., 2004)

▪ Common management strategies 

to manage SA include: host plant 

resistance, early planting, and use 

of insecticides based on pest 

monitoring (Bowling et al., 2016)
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Common pest management strategies in sorghum 

▪ Pest monitoring consists of tracking the 

arrival of sorghum aphids by sampling 

different field areas through space and 

time:

▪ Making estimates about their 

populations using visual 

observations for a defined sampling 

unit (i.e., leaf) (Bowling et al., 2016) 

▪ Usually, sorghum growers in Kansas 

scout their fields using visual 

assessments to determine the 

economic threshold of SA (40 aphids 

per leaf) (Gordy et al., 2019)

▪ Also, during pest monitoring an early 

detection of coccinellids is necessary to 

avoid unnecessary applications and 

promote conservation (Brewer et al. 2017). They 

are good finders of aphids

KSU



Issues with aphid management strategies in sorghum

▪ However, sorghum aphid monitoring is 

time-consuming and challenging task 

due to: 

▪ Aphid exponential growth, requiring 

an early sampling (Bowling et al., 2016) 

▪ Consequently, high frequency of 

sampling, increasing labor costs for 

monitoring

▪ Also, is prone to error in estimates 

and requires certain level of ID 

training

▪ Because is difficult to distinguish 

between aphid species (Brewer et al. 2019)

▪ Also, a complex of natural enemies, 

primary coccinellids, can help 

reduce aphid densities and use of 

costly applications ($15-20/acre + cost 

of application) (Brewer et al., 2017)

UNL



Alternative for aphid management strategies in sorghum

▪ Therefore, there is one alternative to improve aphid management 

strategies:

1. The use of automation to detect individual counts of SA and 

coccinellids in images to reduce the time and cost of aphid monitoring

▪ Currently, technology such as machine learning can be applied to the 

field of entomology using deep learning through computer vision models 

(i.e., CNNs) to perform classification and detection tasks (Høye et al. 2021)



Agricultural tasks using deep learning

▪ Classification: means that you can assign a category to an object

▪ In deep learning you can automatically classify images based on species 

name or categories that are useful for management decisions (e.g., 

classification of arthropod densities)

Li et al. 2020 



Agricultural tasks using deep learning

▪ Detection: means that you can assign a category, locate and count the 

object

▪ In deep learning you can use bounding boxes (i.e., common predictor 

detector) to locate and count the object automatically

Hong et al. 2020 

Li et al. 2019

Wang et al. 2022 



Agricultural tasks using deep learning

▪ Segmentation: means that you divide into separate parts

▪ In deep learning you can use polygons to locate and segment the object 

automatically

Liu et al. 2021 



What is machine learning in practice?

▪ Process of teaching a computer system how to make accurate predictions 

when fed data 

▪ Machine learning uses "deep learning" as a modern technique for image 

processing and data analysis

Caragea, 2020 



What is deep learning?

▪ Representation 

learning attempts to 

automatically learn 

good features or 

representations 
        (Caragea, 2020) 

▪ Deep learning 

algorithms rely on 

layers of neural 

networks (CNN) to 

attempt to learn 

representations and an 

output (Caragea, 2020; Li et al. 

2021) 

▪ Neural networks is 

running several logistic 

regressions at the 

same time (Caragea, 2020) 

XenonStack
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Deep learning frameworks

▪ To use deep learning models we need frameworks to function

▪ We can find open-source models to use

▪ They require an algorithm written in programming language

▪ Labeling interfaces and machine learning platforms

Geeks
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Common examples using deep learning 

▪ Speech recognition on smart 

phones or Alexa

▪ Self-driving cars

▪ ChatGPT

Google images



Project overview: Machine learning

Traditional 

 scouting use visual 

assessments

Use images for scouting

+

Images from 

field scouting 

events 

Detection- of 

sorghum aphids and 

coccinellids to 

perform further 

management 

decisions

+

Algorithm

 programming

=

Deep

learning models



Computer vision model for sorghum aphid detection using deep 

learning

Grijalva et al. 2023 https://doi.org/10.1016/j.jafr.2023.100652

https://doi.org/10.1016/j.jafr.2023.100652


Material & Methods

1. Data generation and imagery 

     preprocessing

2. Manual labeling based on standard threshold 

levels for spraying (1-125 sorghum aphids/leaf) 

▪ Images consisted of a section of 

the leaf with SA (>1100 images) 

collected during field scouting



Material & Methods

3. Creation and testing models by 

computer programming with image 

augmentations

4. Model metric performances

▪ Evaluated the performance of 3 

models found on Pytorch:

▪ YOLOv5n

▪ YOLOv5s

▪ YOLOv5m

▪ Images downscaled: 

▪ 416 × 416 pixels

▪ 640 × 640 pixels 

▪ 1280 × 1280 pixels 

▪ Data split/ratio: 80% Train; 10% 

Validation; and 10% Testing

▪ Augmentation: Mosaic generated 6 

different variants of training images

▪ Metrics evaluated: 

▪ Precision (%)

▪ Recall (%)

▪ mAP@0.5 (%)

▪ Mean error of misdetection (%)



Results

Overall precision, recall, and mAP@0.5 scores of the three detection 

models tested at different image pixel input resolutions

Model type Image pixel 

input 

resolutions 

(pixel × 

pixel)

Precision 

(%)

Recall (%) mAP@0.5 

(%)

YOLOv5n 416 × 416 46.80 35.00 31.70

640 × 640 69.70 54.40 59.10

1280 × 1280 89.00 82.60 89.20

YOLOv5s 416 × 416 56.10 38.10 38.70

640 × 640 75.30 58.40 64.50

1280 × 1280 92.40 82.60 90.40

YOLOv5m 416 × 416 59.90 41.40 43.20

640 × 640 77.70 59.10 65.40

1280 × 1280 92.00 84.50 90.60



Results

Detection results using testing images at 1280 × 1280-pixels input resolution 

without (A) or with aphid detections (B) performed by YOLOv5m model

Model

counting

▪ 41 SA/leaf

B)

Manual 

counting

▪ 58 SA/leaf

A)



Application

We deployed our best trained model to a web application 

https://bit.ly/ksuaphidalatedetection

https://bit.ly/ksuaphidalatedetection


Detecting common coccinellids found in sorghum using deep 

learning models

Wang et al. 2023 https://doi.org/10.1038/s41598-023-36738-5 

https://doi.org/10.1038/s41598-023-36738-5


Material & Methods

1. Data generation and imagery 

      preprocessing

2. Manually labeling using bounding boxes and 

categorizing based on species and subfamily

▪ Downloaded images from iNaturalist 

project (approx 700 images/per 

category) for a total dataset of 4865 

images

▪ 6 species of coccinellids and one 

subfamily category 

▪ Coccinella septempunctata

▪ Coleomegilla maculata

▪ Cycloneda sanguinea

▪ Harmonia axyridis

▪ Hippodamia convergens 

▪ Olla v-nigrum 

▪ Scymninae 



Material & Methods

3. Creation and testing models by 

computer programming

▪ Evaluated the performance of 3 

models found on Pytorch:

▪ Faster R-CNN with FPN

▪ YOLOv5 family

▪ YOLOv7 family

▪ Data split/ratio: (3053 images) 

Train; (1113 images) Validation; 

and (699 images) Testing

▪ Classified by beetle 

instances per image and 

according to their size: 

small, medium or large

4. Model metric performances

▪ Metrics evaluated: 

▪ Average-Precision (%)

▪ AP@0.5 (%)

▪ AP@0.75 (%)

▪ Model architectures 



Results

Overall average-precision (AP), AP@0.5, AP@0.75 scores, and different 

model architectures of the three detection models tested

Model type AP 

(%)

AP@0.50 

(%)

AP@0.75 

(%)

Layer 

numbers

Parameter 

numbers

Inference 

time (ms)

Size 

(MB)

Faster-R50-IoU 62.9 94.1 74.2 50 42,000,000 130.2 165.8

Faster-R101-IoU 64.7 93.4 74.5 101 60,000,000 141.6 242.1

Faster-R50-GIoU 63.5 94.3 73.9 50 42,000,000 127.4 165.8

Faster-R101-GIoU65.6 93.7 75.6 101 60,000,000 138.5 242.1

YOLOv5n 67.6 93.1 79.9 157 1,768,636 4.8 3.8

YOLOv5s 70.8 94.5 83.2 191 7,468,160 3.3 14.4

YOLOv5m 73 96 85.1 212 20,877,180 11.6 44.2

YOLOv5l 73.2 95.3 84.7 267 46,140,588 17.7 92.8

YOLOv5x 73.8 95.9 85.6 322 86,213,788 28 173.1

YOLOv7 74.6 97.3 86.2 314 36,514,136 19.2 74.8

YOLOv7-tiny 68.3 94.7 81.1 208 6,023,832 5.7 12.3

YOLOv7-x 68.3 94.1 79.7 362 70,822,872 28.3 142.1

YOLOv7-d6 65.3 90.6 75.2 566 152,967,98441.8 1200



Results

Detection results using testing images performed by Faster R-CNN and YOLOv7 

model



Application

We deployed our best trained model to a web application 

https://coccinellids.cs.ksu.edu/ 

https://coccinellids.cs.ksu.edu/


Future directions 

Previous developed technology, using deep learning, can be implemented in 

sampling protocols for management decisions of sorghum aphids and by 

further developing mobile applications and unmanned vehicles with sensor 
systems

Witt, 2022 
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